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HOPF HYPERSURFACES IN THE COMPLEX PROJECTIVE SPACE AND
THE SASAKIAN SPACE FORM

E. ABEDI1, M. ILMAKCHI1

Abstract. In this paper, we study isoparametric Hopf hypersurfaces in the complex projective

space CP n such that the structural vector field is principal and the sectional curvature is weakly

constant. Then a similar theory for contact hypersuperfaces of the Sasakian space form is

developed.
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1. Introduction

The complex projective space CPn can be regarded as the base of the principal fibre bundle
associated with a natural action of the group S1 on the sphere S2n+1 ⊂ Cn+1. H.B.Lawson [7]
(1970) used this idea to study a hypersurface of CPn by lifting it to an S1-invariant hypersurface
of the sphere.

An important role plays here the structure vector field of a hypersurface. It is defined by
ξ = JN , where J is the complex structure and N is the unit normal field. In early investigations,
it was found that computations were more tractable when ξ was a principal vector.

A submanifold M of a Riemannian manifold M̃ is called (extrinsically) homogeneous if there
exists a closed subgroup G of the isometry group of M̃ such that M is an orbit of the action of
G on M̃ .

Further, it was observed that ξ is principal for all homogeneous hypersurfaces in CPn. Later
geometric characterizations of this property were found, and the class of Hopf hypersurfaces was
defined. The homogeneous hypersurfaces of CPn all have constant principle curvatures, and in
[6] all hypersurfaces of CPn with constant principal curvatures were determined.

The theory of CR submanifolds was developed to include ambient spaces such as locally
conformal Kähler manifolds (cf. D.E.Blair and S.Dragomir [3], S.Dragomir and L.Ornea [5],
M.H.Shahid [9], quaternionic Kähler manifolds (cf. B.J.Papantoniou and M.H.Shahid [10]).
Another version of thought, similar to that concerning Sasakian geometry as an odd-dimensional
version of Kählerian geometry (cf. D.E.Blair [2]), considers a submanifold M of an almost
contact Riemannian manifold (M̃, (φ, ξ, η, g)), carrying an invariant distribution D, φx(Dx) ⊂
Dx for any x ∈ M , such that the orthogonal complement D⊥ of D in TM is anti-invariant, i.e.
φxD⊥

x ⊆ T⊥x M for any x ∈ M . This notion was already used by A.Bejancu and N.Papaghiuc in
[1] by using the terminology of semi-invariant submanifolds, any hypersurface M of a Sasakian
manifold M̃ is a contact CR-submanifold.

In this paper we study isoparametric Hopf hypersurfaces of CPn with weakly constant holo-
morphic curvature and prove that these hypersurfaces belong to the list of hypersurfaces given
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in Theorem 2.1 (see Takagi [11]). We also define Hopf hypersurfaces of a Sasakian space form
and prove that any such hypersurface with weakly φ-section constant curvature has constant
principal curvature.

2. Preliminaries

Let Cn+1 be the (n + 1)−dimensional complex space with natural Kähler structure (J ′, 〈 , 〉)
and let S2n+1 be the unit sphere

S2n+1 = {(z1, . . . , zn+1) |
n+1∑

i=1

zizi = 1}.

Let ψ′ be the unit normal vector field to S2n+1. We put V ′ = −J ′ψ′, then the integral curve
of V ′ is a great circle S1 = {e

√−1θ| 0 ≤ θ < 2π}. We define a map S1 × S2n+1 → S2n+1 by

(e
√−1θ, ψ) → e

√−1θψ,

Then S1 acts on S2n+1 freely and the quotient space of S2n+1 is the complex projective space
CPn. Let p ∈ S2n+1 and

Hp(S2n+1) = {X ∈ Tp(S2n+1)|〈X, V ′〉 = 0},
Then

Tp(S2n+1) = Hp(S2n+1)⊕ span{V ′
p},

Hp(S2n+1) and span{V ′
p} are called the horizontal subspace and the vertical subspace of Tp(S2n+1),

respectively. By definition, the horizontal subspace Hp(S2n+1) is isomorphic to Tπ(p)(CPn),
where π is the natural projective from S2n+1 onto CPn. Since Hp(S2n+1) is J ′−invariant sub-
space, so the almost complex structure J can be induced on T

π(p)(CPn).
We define a Riemannian metric g and a connection ∇ in CPn respectively by

g(X, Y ) = g′(X∗, Y ∗),

∇XY = π∗(∇′X∗Y ∗),

where g′ is the induced metric S2n+1 from 〈 , 〉 and X∗ is a unique horizontal lift of X.
The complex projective space CPn with this structure is a Kähler manifold and by Gauss

equation we have for the curvature tensor of CPn

R(X,Y )Z = g(Y, Z)X − g(X, Z)Y + g(JY, Z)JX

−g(JX,Z)JY − 2g(JX, Y )JZ.

Suppose that M is a real hypersurface of CPn and ψ is the unit normal vector field of M

on CPn. We put ξ = −Jψ, then by the Hermitian condition, ξ is a unit tangent vector field
on M which is called the structure vector field of M . A real hypersurface M is called a Hopf
hypersurface if ξ is a principal vector field, that is, ξ is an eigenvector of the shape operator A

with respect to ψ.
Let M be a submanifold of CPn and BM the bundle of unit normal vectors of M . For a

sufficiently small real number t ∈ R− {0}, we can define the following immersion,

Φt : BM → CPn,

ψ → exp tψ,

where exp denote the exponential mapping of CPn. This Φt(BM) with induced Riemannian
metric from CPn ios called the tube of radius t over M in CPn. Let S2n+1 be the unit sphere
in CPn+1 = CP p+1 ⊕ CP q+1. In S2n+1 we choose two sphere, S2p+1 and S2q+1, in such a way
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that they lie respectively in complex subspace CP p+1 and CP q+1 of CPn+1. Then the product
S2p+1 × S2q+1 is a hypersurface of S2n+1 and may be expressed for a fixed t by the following
equations

p∑

i=0

ψiψ̄i = cos2 t,

n+1∑

i=p+1

ψiψ̄i = sin2 t.

The action of S1 leaves S2p+1×S2q+1 invariant, and the quotient manifold S2p+1×S2q+1/S1

is a real hypersurface of CPn+1. We denote this hypersurface by M c
p,q. Particularly M c

0,n−1 is
diffeomorphic with S2n−1 and is called geodesic hypersphere.
The manifold M c

n,m is a tube over the totally geodesic complex subspace CP
n
2 in CP

n+p
2 , and

the geodesic hypersphere M c
n,0 is a tube over the totally geodesic complex hyperplane.

The homogeneous real hypersurfaces in CPn+1 were classified by Ryoichi Takagi [11] in 1973.

Theorem 2.1. A real hypersurface in CPn+1, n ≥ 2, is homogeneous if and only if it is
congruent to

(1) A tube around a k−dimensional totally geodesic CP k in CPn+1 for some k ∈ {0, · · · , n−
1}, or

(2) A tube around the complex quadric Qn−1 = {[ψ] ∈ CPn+1|ψ2
0 + . . . + ψ2

n = 0} in CPn+1,
or

(3) A tube around the Segre embedding of CP 1 × CP k into CP 2k+1 for some k ≥ 2, or
(4) A tube around the Plucker embedding into CP 9 of the complex Grassmann manifold

G2(C5) of complex 2−planes in C5, or
(5) A tube around the half spin embedding into CP 15 of the Hermitian symmetric space

SO(10)/U(5).

For a homogeneous real hypersurfaces in CPn we have g ∈ {2, 3, 5}, where g is the number of
distinct principal curvatures. Zhen Qi Li [8] proved that g ∈ {2, 3, 5} for all isoparametric real
hypersurfaces in CPn with constant principal curvature.

Also,Kimura in [6] proved that,

Theorem 2.2. Let Mn be a isoparametric hypersurface of complex projective space CPn. Then
Mn is homogeneous in CPn if and only if it has a constant principal curvature.

Let Hp(M), p ∈ M be the J−invariant subspace of TpM . Let X ∈ H(M) and H(X) =
g(R(X, JX)JX, X), then M is said to have a weakly constant holomorphic curvature if H(X)
is a constant function for any X ∈ H(M).

A differentiable manifold M̃2m+1 is said to have an almost contact structure if it admits a
(non-vanishing) vector field ξ , a one-form η and a (1, 1)−tensor field φ satisfying

η(ξ) = 1 , φ2 = −I + η ⊗ ξ,

where I denotes the field of identity transformations of the tangent spaces at all points. These
conditions imply that φξ = 0 and η ◦ φ = 0, and that the endomorphism φ has rank 2m at
every point in M̃2m+1. A manifold M̃2m+1, equipped with an almost contact structure (φ, ξ, η)
is called an almost contact manifold and will be denoted by (M̃2m+1, (φ, ξ, η)).

Suppose that M̃2m+1 is a manifold carrying an almost contact structure. A Riemannian
metric g on M̃2m+1 satisfying

g(φX, φY ) = g(X,Y )− η(X)η(Y )
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for all vector fields X and Y is called compatible with the almost contact structure, and (φ, ξ, η, g)
is said to be an almost contact metric structure on M̃2m+1. It is known that an almost contact
manifold always admits at least one compatible metric. Note that putting Y = ξ yields

η(X) = g(X, ξ)

for all vector fields X tangent to M̃2m+1, which means that η is the metric dual of the charac-
teristic vector field ξ.

A manifold M̃2m+1 is said to be a contact manifold if it carries a global one-form η such that

η ∧ (dη)m 6= 0

everywhere on M . The one-form η is called the contact form.
A submanifold M of a contact manifold M̃2m+1 tangent to ξ is called an invariant (resp.

anti-invariant) submanifold if φ(TpM) ⊂ TpM,∀p ∈ M (resp. φ(TpM) ⊂ T⊥p M, ∀p ∈ M).
A submanifold M tangent to ξ of a contact manifold M̃2m+1 is called a contact CR-submanifold

if there exists a pair of orthogonal differentiable distributions D and D⊥ on M , such that:

(1) TM = D ⊕D⊥ ⊕ Rξ, where Rξ is the 1−dimensional distribution spanned by ξ;
(2) D is invariant by φ, i. e., φ(Dp) ⊂ Dp, ∀p ∈ M ;
(3) D⊥ is anti-invariant by φ, i. e., φ(D⊥

p ) ⊂ T⊥p M,∀p ∈ M .

Let (M̃, φ, ξ, η, g̃) be a(2n + 1)-dimensional contact manifold such that

∇Xξ = φX , (∇Xφ)Y = η(Y )X − g̃(X,Y )ξ

then M̃ is called a Sasakian manifold. A Sasakian space form is a Sasakian manifold of constant
φ− sectional curvature and if this is the case, the Riemannian curvature tensor field R̃ is given
by

R̃(X, Y )Z = −c− 1
4

{η(Z)[η(Y )X − η(X)Y ] + [g̃(Y, Z)η(X)− g̃(X, Z)η(Y )]

+g̃(φX,Z)φY + 2g̃(φX, Y )φZ − g̃(φY,Z)φX}
+

c + 3
4

{g̃(Y,Z)X − g̃(X,Z)Y }

for any X, Y, Z ∈ χ(M̃).
Similarly to Hermitian version, if g(R(X, φX)φX, X) be constant function for any vector filed

X, then M is called weakly constant φ−sectional curvature.

3. Hopf hypersurfaces in CPn

Let M2n+1 be a connected Hopf hypersurface of a complex projective space CPn+1. Let N

be a unit normal vector field of M2n+1 in CPn. Then

TpM = Hp(M)⊕ Rξ

for all p ∈ M , where Hp(M) is the horizontal subspace and ξ = −JN is the vertical unit vector
field. Since M2n+1 is a Hopf hypersurface, the vertical vector field ξ is an eigenvector field of
the shape operator A, hence Aξ = αξ.

We begin with result on complex space forms.
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Lemma 3.1 (4). If M2n+1 be a connected hypersurface of a complex projective space CPn+1

satisfies the commutative condition JAX = AJX for all tangent vector field X , then ξ is an
eigenvector of A with constant eigenvalue and

A2X − αAX −X + g(ξ,X)ξ = 0.

Since A is self adjoint and Hp(M) is invariant subspace under A for any p ∈ M , therefore
exist a local frame

X1, . . . , X2n

for H(M) where
AXi = λiXi , i = 1, . . . , 2n.

Therefore with set X = Xi in the equation of theorem we have

λ2
i Xi − αλiXi −Xi + g(ξ,X)ξ = 0.

Because {Xi, ξ|i = 1, . . . , 2n} is linear independent then

λ2
i − αλi − 1 = 0 , i = 1, , . . . , 2n.

Since α is constant λi for all i = 1, , . . . , 2n is constant. Hence

Theorem 3.1. Let M2n+1 be a connected isoparametric hypersurface of complex projective space
CPn which satisfies the condition JAX = AJX for all tangent vector fields X. Then M2n+1 is
one of the hypersurfaces described by Theorem (2.1).

Corollary 3.1. Let M2n+1 be a connected isoparametric hypersurface of complex projective
space CPn with satisfies the commutative condition JAX = AJX for all tangent vector field X.
Then M2n+1 has a weakly constant holomorphic curvature.

Since A is self adjoint and Hp(M) is an invariant subspace under A for any p ∈ M , there
exists a local frame for H(M) which is A−invariant. Suppose that this local frame has the form.
Suppose the local frame for H(M) be the following form

X1, . . . .Xn, JX1, . . . , JXn,

where
AXi = λiXi , AJXi = µiJXi i = 1, . . . , n.

By Gauss equation

R(X,Y )Z = R(X, Y )Z + g(AY, Z)AX − g(AX, Z)AY,

where R and R denote the curvature tensors on M2n+1 and CPn+1, respectively. Therefore

g(R(Xi, JXi)JXi, Xi) = 4 + λiµi.

Theorem 3.2. Let M2n+1 be a connected isoparametric Hopf hypersurface of the complex pro-
jective space CPn with weakly constant holomorphic curvature so that to accept basis as above
form. Then M2n+1 is one of hypersurfaces listed in Theorem (2.1).

Proof. First by the assumption we have

λiµi = const. ∀i = 1, . . . , n (1)

Fix a i ∈ {1, 2, . . . , n}. Now for all tangent vector fields X, Y, Z in Codazzi equation

g(R(X, Y )Z, N) = g((∇XA)Y − (∇Y A)X, Z) (2)
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with set X = Xi and Y = ξ we have

−JXi = (∇XiA)ξ − (∇ξA)Xi

= (Xiα)ξ + α∇Xiξ −A(∇Xiξ)− (ξλi)Xi − λi∇ξXi + A(∇ξXi). (3)

On the other hand

∇Xiξ = −∇Xiξ + g(AXi, ξ)

= −∇Xi(JN) = −J∇XiN

= J(AXi) = λiJXi (4)

so by (3) and (4), we obtain

−JXi = (Xiα)ξ + αλiJXi − λiµiJXi − (ξλi)Xi − λi∇ξXi + A(∇ξXi). (5)

Suppose

∇ξXi =
n∑

j=1

ajXj +
n∑

j=1

bjJXj + cξ. (6)

Since ∇ξξ = 0, then in (6)we have c = 0. Now by (5)

(ξλi)Xi +
n∑

j=1

λiajXj +
n∑

j=1

λibjJXj −
n∑

j=1

λiajXj

−
n∑

j=1

µjbjJXj − αλiJXi + λiµiJXi − (Xiα)ξ − JXi = 0

Since ai = 0 (g(∇ξXi, Xi) = 0), then

(ξλi)Xi +
∑

j 6=i

(λi − λj)ajXj +
∑

j 6=i

(λi − µj)bjJXj

+(λiµi − αλi + µibi − µib− 1)JXi − (Xiα)ξ = 0.

Since Xj , JXj |j = 1, , n are linearly independent, we have

ξλi = 0, (7)

λiµi − αλi + µibi − µibi − 1 = 0, (8)

Xiα = 0. (9)

Setting X = JX and Y = U in (2) and applying the same method, we get

ξµi = 0 (10)

λiµi − αλi − λibi + µibi − 1 = 0, (11)

JXiα = 0. (12)

Adding (8) to (11), we get
2λiµi − α(λi + µi)− 2 = 0. (13)

Using the covariant derivative of (13) with respect to ξ and the equalities (7) and (10), we
obtain

(λi + µi)ξα = 0.

If
(λi + µi)(p) = 0
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for some p ∈ M then by (13)
λ2

i (p) + 1 = 0

and this is impossible. Therefore ξα = 0 and so α is constant. Since λiµi and α are constant,
the relation (13) shows that λi + µi and hence λi and µi are constant. This shows that M2n+1

is homogeneous and hence by Theorem (2.1) is congruent to one of the following manifolds:
(1) A tube around a k−dimensional totally geodesic CP k in CPn+1 for some k ∈ {0, · · · , n−

1}, or
(2) A tube around the complex quadric Qn−1 = {[ψ] ∈ CPn + 1|ψ2

0 + . . . + ψ2
n = 0} in

CPn+1, or
(3) A tube around the Segre embedding of CP 1 × CP k into CP 2k+1 for some k ≥ 2, or
(4) A tube around the Plucker embedding into CP 9 of the complex Grassmann manifold

G2(C5) of complex 2−planes in C5, or
(5) A tube around the half spin embedding into CP 15 of the Hermitian symmetric space

SO(10)/U(5).
¤

4. Hopf hypersurfaces of a Sasakian space form

Let (M, g) be a real connected hypersurface of M̃(c) and N be a unit normal vector field on
M . Then we have

TM = D ⊕D⊥ ⊕ Rξ,

where D is a φ-invariant subspace and D⊥ is the 1-dimensional subspace of TM spanned by
V = φ(N) which is the orthogonal complement of D.

Definition 4.1. Let A be the shape operator of M and the plan spanned by ξ, V be an invariant
subspace of A. Then we call the hypersurface M of M̃ a Hopf hypersurface.

Lemma 4.1. Suppose that M is a hypersurface of a Sasakian space form M̃(c) with the unit
normal vector field N on M . Then ∇XV = −φAX for all X ∈ D.

Proof. From the Gauss formula and the Sasakian equation we compute

∇XV + g(AX,V )N = −φAX

for all X ∈ D. Considering the tangential and the normal parts, we have ∇XV = −φAX. ¤

Lemma 4.2. If M is a hypersurface of a Sasakian space form M̃(c) with the unit normal vector
field N on M , then Aξ = V .

Proof. From the Gauss formula and the Sasakian equation we compute

∇V ξ + g(AV, ξ)N = −φV = N.

Considering the tangential and the normal parts of this relation, we conclude

∇V ξ = 0 , g(AV, ξ) = 1, (14)

and again we compute
∇ξξ + g(Aξ, ξ)N = −φξ = 0.

Considering the tangential and the normal parts of this relation, we conclude

∇ξξ = 0 , g(Aξ, ξ) = 0, (15)

which implies that Aξ = V .
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From the Gauss formula and the Sasakian equation with the Weingarten formula and above
lemma we compute

∇ξV + g(AV, ξ)N = N,

and let AV = αV + βξ we have

∇V V + g(AV, V )N = −φAV = −αN,

considering the tangential and normal part we compute

∇ξV = 0 , ∇V V = 0, (16)

and AV = ξ + αV .
Let M be Hopf hypersurface of M̃(c). Since A is self adjoint and D and span{ξ,V } are

invariant under A for any p ∈ M , we may suppose that the local frame for H(M) is of the form

X1, . . . , Xn−1, φ(X1), . . . , φ(Xn−1),

for D and {W1,W2} for span{ξ, V }, where

AXi = µiXi , Aφ(Xi) = λiφ(Xi), i = 1, . . . , n− 1

AW1 = γ1W1 , AW2 = γ2W2.

Therefore

W1 = ξ cos θ + V sin θ,

W2 = ξ sin θ + V cos θ.

for some 0 < θ < π/2. So

V = W1 sin θ + W2 cos θ,

ξ = W1 cos θ −W2 cos θ.

¤

Lemma 4.3. Suppose M is hypersurface of Sasakian space form M̃(c) then γ1 = − tan θ and
γ2 = cot θ.

Proof. From lemma 4.1 we have

AW1 = Aξ cos θ + AV sin θ = − V cos θ + AV sin θ,

AW2 = −Aξ sin θ + AV cos θ = V sin θ + AV cos θ.

Hense
V = AW2 sin θ −AW1 cos θ = γ2W2 sin θ − γ1W1 cos θ. (17)

So we have
(γ2 sin θ − cos θ)W2 − (γ1 cos θ + sin θ)W1 = 0.

But since W1 and W2 are linearly independent, we have

γ1 = − tan θ , γ2 = cot θ.

Hence
γ1 = − tan θ , γ2 = cot θ.

So for the eigenvalues γ1 and γ2 we have

(γ2 − γ1) cos θ sin θ = 1, (18)

γ1 cos2 θ + γ2 sin2 θ = 0. (19)
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¤

Theorem 4.1. Let M2n be a connected Hopf hypersurface of Sasakian space form (M̃2n+1, φ, ξ, η)
with a weakly constant φ-sectional curvature. Then M2n has constant principal curvature

Proof. By the Gauss equation we have

g(R(Xi, φXi)φXi, Xi) = c + λiµi.

Since all φ-sectional curvatures of M are constant then

λiµi = const. for all 1 ≤ i ≤ n− 1 (20)

We set X = Xi (1 ≤ i ≤ n− 1) and Y = Wj (1 ≤ j ≤ 2) in the Codazzi equation then

0 = (∇XiA)Wj − (∇WjAi)Xi = (Xiα)Wj + α∇XiWj −A(∇XiWj)

−(Wjλi)Xi − λi∇WjXi + A(∇WjXi). (21)

A direct accounting show that

∇XiV = tan(∇XiV ) = tan(∇Xi(φN))

= tan((∇Xiφ)N + φ∇XiN) = tan(φ(−AXi))

= −µiφXi,

and
∇Xiξ = tan(∇Xiξ) = φXi,

and

∇XiW1 = φXi cos θ − µiφXi sin θ

+(Xi(cos θ))ξ + (Xi(sin θ))V, (22)

and

∇XiW2 = −φXi sin θ − µiφXi cos θ

−(Xi(sin θ))ξ + (Xi(cos θ))V. (23)

Also

∇WjXi =∇Wj (−φ2Xi) = −φ2(∇WjXi)

=∇WjXi − g(∇WjXi, ξ)ξ,

then
g(∇WjXi, ξ) = 0. (24)

On the other hand, since

∇WjV + g(AWj , V )N = ∇WjV = ∇Wj (φN) = −γjφWj ,

and also g(AWj , V )N = −γjφWj , then ∇WjV = 0, so

g(∇WjXi, V ) = 0. (25)

By (24) and (25) we can suppose

∇W1Xi =
n∑

i=1

ajXj +
n∑

j=1

bjφXj , (26)

∇W2Xi =
n∑

i=1

a′jXj +
n∑

j=1

b′jφXj . (27)
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Since the base of {Xi, φXi,W1,W2|i = 1, . . . , n− 1} is linear independent, then by (21), (22),
(23), (26) and (27) we get

Wjµi = 0, j = 1, 2, (28)

γ1 cos θ − γ1µi sin θ − λi cos θ + µiλi sin θ − µibi + λibi = 0, (29)

−γ2 sin θ − γ2µi cos θ + λi sin θ + µiλi cos θ − µib
′
i + λib

′
i = 0, (30)

Xiγj = 0, j = 1, 2, (31)

(γ2 − γ1)((Xi(cos θ) sin θ − (Xi(sin θ)) cos θ) = 0. (32)

We set X = φXi and Y = Wj in the Codazzi equation. Using the similar method, we will
have

Wjλi = 0, j = 1, 2 (33)

γ1 cos θ − γ1λi sin θ − µi cos θ + µiλi sin θ + µibi − λibi = 0, (34)

−γ2 sin θ − γ2λi cos θ + µi sin θ + µiλi cos θ + µib
′
i − λib

′
i = 0, (35)

φXiγj = 0, j = 1, 2 (36)

(γ2 − γ1)((φXi(cos θ) sin θ − (φXi(sin θ)) cos θ) = 0. (37)

With set X = W1 and Y = W2 in Codazzi equation, too, we have

0 = (∇W1A)W2 − (∇W2Ai)W1

= (W1γ2)W2 + γ2∇W1W2

−A(∇W1W2)− (W2γ1)Wi − γ1∇W2X1 + A(∇W2W1). (38)

On the other hand, a direct computation shows that

∇W1W2 = − ξ(cos θ(ξ(sin θ)) + sin θ(V (sin θ)))

+ V (cos θ(ξ(cos θ)) + sin θ(V (cos θ)))

− cos θ sin θ∇ξξ + cos2 θ∇ξV

− sin2 θ∇V ξ + sin θ cos θ∇V V (39)

and

∇W2W1 = − ξ(sin θ(ξ(cos θ))− cos θ(V (cos θ)))

− V (sin θ(ξ(sin θ))− cos θ(V (sin θ)))

− cos θ sin θ∇ξξ + sin2 θ∇ξV

+ cos2 θ∇V ξ + sin θ cos θ∇V V . (40)

From (39) and (40) we have

∇W1W2 = − ξ(cos θ(ξ(sin θ)) + sin θ(V (sin θ)))

+ V (cos θ(ξ(cos θ)) + sin θ(V (cos θ))),

∇W2W1 = − ξ(sin θ(ξ(cos θ))− cos θ(V (cos θ)))

− V (sin θ(ξ(sin θ))− cos θ(V (sin θ))).
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Then from (38) we have

[cosθ(ξ(sin θ)) + sin θ(V (sin θ))](Aξ − γ2ξ)

+[cos θ(ξ(cos θ)) + sin θ(V (cos θ))](γ2V −AV )

+[sin θ(ξ(cos θ))− cos θ(V (cos θ))](γ1ξ −Aξ)

+[sin θ(ξ(sin θ))− cos θ(V (sin θ))](γ1V −AV ) = 0,

so

W1(γ2) − (γ1 sin θ − γ2 sin θ)[sin θ(ξ(cos θ))− cos θ(V (cos θ))]

+(γ1 cos θ − γ2 cos θ)[sin θ(ξ(sin θ))− cos θ(V (sin θ))] = 0 (41)

and

W2(γ1) − (γ2 cos θ − γ1 cos θ)[cos θ(ξ(sin θ)) + sin θ(V (sin θ))]

+(γ2 sin θ − γ1 sin θ)[cos θ(ξ(cos θ)) + sin θ(V (cos θ))] = 0. (42)

Now by adding (30) to (35) and (29) to (34) we have

2γ2 sin θ + (γ2 cos θ − sin θ)(λi + µi)− 2µiλi cos θ = 0, (43)

2γ1 cos θ − (γ1 sin θ + cos θ)(λi + µi) + 2µiλi sin θ = 0. (44)

By (43) and (44)
(λi + µi)(γ1 + γ2)− 2λiµi + 2 = 0. (45)

From lemma 4.3 we have
Wj(γ1γ2) = 0. (46)

By (45) if (λi + µi)(p) = 0 for some p ∈ M , then λ2
i (p) = −1 and this is impossible, we have

Wj(γ1 + γ2) = 0. (47)

Therefore
Wj(γ1) = Wj(γ2) = 0. (48)

Now by (31) and (36) γ1 and γ2 are constant.
From (31), (36) and (18)

(γ1 + γ2)X(λi + µi) = 0.

Hence if γ1 + γ2 = 0 then by (45) conclude

γ2
1 = γ2

2 = 1 , λiµi = 1.

With product of equation (43) to (44) we have

(4− (λi + µi)2)(γ2
1 − 2) = 0.

Since γ2
1 − 2 6= 0 then

(λi + µi)2 = 4

so λi + µi are constant.
In other case if γ1 + γ2 6= 0 then

X(λi + µi) = 0,

hence, again λi + µi are constant.
Therefore λi, µi, γ1 and γ2 are constant for i = 1, . . . , n− 1. ¤
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