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HOPF HYPERSURFACES IN THE COMPLEX PROJECTIVE SPACE AND
THE SASAKIAN SPACE FORM

E. ABEDI', M. ILMAKCHI*

ABSTRACT. In this paper, we study isoparametric Hopf hypersurfaces in the complex projective
space CP™ such that the structural vector field is principal and the sectional curvature is weakly
constant. Then a similar theory for contact hypersuperfaces of the Sasakian space form is
developed.
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1. INTRODUCTION

The complex projective space CP" can be regarded as the base of the principal fibre bundle
associated with a natural action of the group S! on the sphere S*"*!1 c C"*!. H.B.Lawson [7]
(1970) used this idea to study a hypersurface of CP™ by lifting it to an S'-invariant hypersurface
of the sphere.

An important role plays here the structure vector field of a hypersurface. It is defined by
& = JN, where J is the complex structure and NV is the unit normal field. In early investigations,
it was found that computations were more tractable when & was a principal vector.

A submanifold M of a Riemannian manifold M is called (extrinsically) homogeneous if there
exists a closed subgroup G of the isometry group of M such that M is an orbit of the action of
G on M.

Further, it was observed that £ is principal for all homogeneous hypersurfaces in CP"™. Later
geometric characterizations of this property were found, and the class of Hopf hypersurfaces was
defined. The homogeneous hypersurfaces of CP™ all have constant principle curvatures, and in
[6] all hypersurfaces of CP™ with constant principal curvatures were determined.

The theory of C'R submanifolds was developed to include ambient spaces such as locally
conformal Kahler manifolds (cf. D.E.Blair and S.Dragomir [3], S.Dragomir and L.Ornea [5],
M.H.Shahid [9], quaternionic K&hler manifolds (cf. B.J.Papantoniou and M.H.Shahid [10]).
Another version of thought, similar to that concerning Sasakian geometry as an odd-dimensional
version of Kéhlerian geometry (cf. D.E.Blair [2]), considers a submanifold M of an almost
contact Riemannian manifold (]TJ/ , (0,€,M,9)), carrying an invariant distribution D, ¢, (D,) C
D, for any = € M, such that the orthogonal complement D+ of D in TM is anti-invariant, i.e.
¢.D;- C T;-M for any x € M. This notion was already used by A.Bejancu and N.Papaghiuc in
[1] by using the terminology of semi-invariant submanifolds, any hypersurface M of a Sasakian
manifold M is a contact C'R-submanifold.

In this paper we study isoparametric Hopf hypersurfaces of CP"™ with weakly constant holo-
morphic curvature and prove that these hypersurfaces belong to the list of hypersurfaces given
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in Theorem 2.1 (see Takagi [11]). We also define Hopf hypersurfaces of a Sasakian space form
and prove that any such hypersurface with weakly ¢-section constant curvature has constant
principal curvature.

2. PRELIMINARIES

Let C"*! be the (n + 1)—dimensional complex space with natural Kihler structure (J', { , ))
and let S2"*! be the unit sphere

n+1
§2nt+l {(Zl’ o 7Zn+1) ’ Zzzzz _ 1}'
i=1

Let ¢ be the unit normal vector field to S?"*1. We put V/ = —J'¢/, then the integral curve
of V' is a great circle S' = {e¥V~19| 0 < 0 < 27}. We define a map S* x §2+1 — §2n+1 by

(eV 710, 9) — eV,

Then S* acts on S?"*! freely and the quotient space of S?"*! is the complex projective space
CP™. Let p € 8"+ and

Hy(S*+) = {X € T,(S™ (X, V') = 0},
Then
Tp(s2n+1) — Hp(52n+1) D span{VIf},
H,(S**1) and span{V} are called the horizontal subspace and the vertical subspace of T),(S ntly
respectively. By definition, the horizontal subspace H,(S?"™!) is isomorphic to Trp) (CP?),
where 7 is the natural projective from S?"*! onto CP". Since H,(S5?"*1) is J'—invariant sub-

space, so the almost complex structure J can be induced on Tﬁ(p)((CP”).
We define a Riemannian metric g and a connection V in CP" respectively by

9(X,Y) =g (X", Y"),
VxY = m (V. Y™),
where ¢ is the induced metric $?"*! from ( , ) and X* is a unique horizontal lift of X.

The complex projective space CP™ with this structure is a Kahler manifold and by Gauss
equation we have for the curvature tensor of CP"

RX,)Y)Z =gV, 2)X —g(X,2)Y +9(JY,Z)J X
—g(JX,Z2)JY —29(JX,Y)JZ.

Suppose that M is a real hypersurface of CP™ and v is the unit normal vector field of M
on CP". We put £ = —J1, then by the Hermitian condition, ¢ is a unit tangent vector field
on M which is called the structure vector field of M. A real hypersurface M is called a Hopf
hypersurface if £ is a principal vector field, that is, £ is an eigenvector of the shape operator A
with respect to .

Let M be a submanifold of CP™ and BM the bundle of unit normal vectors of M. For a
sufficiently small real number ¢t € R — {0}, we can define the following immersion,

®,: BM — CP",

Y — expty,
where exp denote the exponential mapping of CP™. This ®;(BM) with induced Riemannian
metric from CP™ ios called the tube of radius t over M in CP". Let S?"*! be the unit sphere
in CP"t! = CPPt! @ CP9t!. In S?"*+! we choose two sphere, S?*1 and $2¢F!, in such a way
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that they lie respectively in complex subspace CPPT! and CP4*! of CP™*!. Then the product
S§2p+l o §2a+1 s g hypersurface of S?"*! and may be expressed for a fixed ¢ by the following
equations

P n+1
Z i)t = cos® t, Z i)t = sin’ t.
i=0 i=p+1

The action of S! leaves S?P*! x §24+1 invariant, and the quotient manifold S?P*1 x §24+1/G1
is a real hypersurface of CP"*!. We denote this hypersurface by Mg .. Particularly Mg, is
diffeomorphic with S??~! and is called geodesic hypersphere.

The manifold My ,, is a tube over the totally geodesic complex subspace CP3? in (CPnTer, and
the geodesic hypersphere M  is a tube over the totally geodesic complex hyperplane.

The homogeneous real hypersurfaces in CP"*! were classified by Ryoichi Takagi [11] in 1973.

Theorem 2.1. A real hypersurface in CP™1, n > 2, is homogeneous if and only if it is
congruent to

1) A tube around a k—dimensional totally geodesic CP* in CP™*1 for some k € {0,--- ,n—

(1) g f R
1}, or

2) A tube around the complex quadric Q"' = {[yy] € CP" Y2 + ...+ 42 = 0} in CP*H!,

0 n

or

3) A tube around the Segre embedding of CP' x CP¥ into CP?**! for some k > 2, or

(3) g g of f > 2,

(4) A tube around the Plucker embedding into CP? of the compler Grassmann manifold
G2(CP) of complex 2—planes in C°, or

(5) A tube around the half spin embedding into CP'Y of the Hermitian symmetric space
SO(10)/U(5).

For a homogeneous real hypersurfaces in CP™ we have g € {2,3,5}, where g is the number of
distinct principal curvatures. Zhen Qi Li [8] proved that g € {2,3,5} for all isoparametric real
hypersurfaces in CP™ with constant principal curvature.

Also,Kimura in [6] proved that,

Theorem 2.2. Let M™ be a isoparametric hypersurface of complex projective space CP™. Then
M™ is homogeneous in CP™ if and only if it has a constant principal curvature.

Let H,(M), p € M be the J—invariant subspace of T,M. Let X € H(M) and H(X)
g(R(X,JX)JX,X), then M is said to have a weakly constant holomorphic curvature if H(X)
is a constant function for any X € H(M).

A differentiable manifold M2+ is said to have an almost contact structure if it admits a
(non-vanishing) vector field £ , a one-form 7 and a (1,1)—tensor field ¢ satisfying

where I denotes the field of identity transformations of the tangent spaces at all points. These
conditions imply that ¢¢ = 0 and 1o ¢ = 0, and that the endomorphism ¢ has rank 2m at
every point in M2+ A manifold M’ 2m+1 " equipped with an almost contact structure (¢, &,n)
is called an almost contact manifold and will be denoted by (M m+l (g ¢ 0n)).

Suppose that M?m+1 is a manifold carrying an almost contact structure. A Riemannian
metric g on M2™+! satisfying

9(¢X,0Y) = g(X,Y) —n(X)n(Y)
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for all vector fields X and Y is called compatible with the almost contact structure, and (¢, &, 7, g)
is said to be an almost contact metric structure on M2?™+1, It is known that an almost contact
manifold always admits at least one compatible metric. Note that putting Y = ¢ yields

n(X) = g(X,¢)

for all vector fields X tangent to M 2m+1 " which means that 7 is the metric dual of the charac-
teristic vector field &.
A manifold M?™*! is said to be a contact manifold if it carries a global one-form 7 such that

n A (dn)™ #0

everywhere on M. The one-form 7 is called the contact form.

A submanifold M of a contact manifold M2m+! tangent to £ is called an invariant (resp.
anti-invariant) submanifold if ¢(T,M) C T,M,Vp € M (resp. ¢(T,M) C T;-M, Vp e M).

A submanifold M tangent to £ of a contact manifold M2m+1 g called a contact CR-submanifold
if there exists a pair of orthogonal differentiable distributions D and D+ on M, such that:

(1) TM = D @ D+ & R¢, where R¢ is the 1—dimensional distribution spanned by &;
(2) D is invariant by ¢, i. e., ¢(D,) C D,,Vp € M;
(3) D™ is anti-invariant by ¢, i. e., ¢(D;-) C T;-M,Vp € M.

Let (]\7 ,0,&,m,9) be a(2n + 1)-dimensional contact manifold such that
VxE=0¢X , (Vx9)Y =n(Y)X —g(X,Y)¢

then M is called a Sasakian manifold. A Sasakian space form is a Sasakian manifold of constant
¢— sectional curvature and if this is the case, the Riemannian curvature tensor field R is given
by

R(X,Y)Z = =< ()X — n(X)Y]+ GV, Z2)n(X) ~ 5K, Z)n(¥)]
FGOX, 2)6Y + 256X, Y )07 — (8, Z)6X}

‘T3 G 2)X — §(X, 2)Y)

M

for any XY, Z € x(M).
Similarly to Hermitian version, if g(R(X, $X)¢X, X) be constant function for any vector filed
X, then M is called weakly constant ¢—sectional curvature.

3. HOPF HYPERSURFACES IN CP™

Let M?"*1 be a connected Hopf hypersurface of a complex projective space CP"1. Let N
be a unit normal vector field of M?"*! in CP™. Then

T,M = H,(M) & RE

for all p € M, where H, (M) is the horizontal subspace and { = —JN is the vertical unit vector
field. Since M?"*1 is a Hopf hypersurface, the vertical vector field ¢ is an eigenvector field of
the shape operator A, hence A¢ = €.

We begin with result on complex space forms.
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Lemma 3.1 (4). If M?"* be a connected hypersurface of a complex projective space CP™*!
satisfies the commutative condition JAX = AJX for all tangent vector field X , then £ is an
eigenvector of A with constant eigenvalue and

A%2X —aAX — X +g(£,X)E=0.

Since A is self adjoint and Hy,(M) is invariant subspace under A for any p € M, therefore
exist a local frame

X1,..., X0,
for H(M) where
AX; =X , i=1,...,2n.

Therefore with set X = X; in the equation of theorem we have

N X — aXXi — X + g(€, X)E = 0.
Because {X;,{]i =1,...,2n} is linear independent then

M_oa\—-1=0 , i=1,,...,2n.
Since « is constant A; for all ¢ = 1,,...,2n is constant. Hence
Theorem 3.1. Let M?"*1! be a connected isoparametric hypersurface of complex projective space

CP"™ which satisfies the condition JAX = AJX for all tangent vector fields X. Then M?"+1 is
one of the hypersurfaces described by Theorem (2.1).

Corollary 3.1. Let M?"*! be a connected isoparametric hypersurface of complex projective
space CP™ with satisfies the commutative condition JAX = AJX for all tangent vector field X .
Then M*" 1 has a weakly constant holomorphic curvature.

Since A is self adjoint and Hp(M) is an invariant subspace under A for any p € M, there
exists a local frame for H (M) which is A—invariant. Suppose that this local frame has the form.
Suppose the local frame for H(M) be the following form

Xq,....Xp, J X1, ..., J Xy,
where
AX;, =X, , AJX, = uJX; i=1,...,n.
By Gauss equation
R(X,Y)Z = R(X,Y)Z + g(AY, Z)AX — g(AX, Z)AY,
where R and R denote the curvature tensors on M?2"T! and CP"*!, respectively. Therefore
9(R(X;, JX3)J X3, Xi) = 4 4 Nips.
Theorem 3.2. Let M?" ! be a connected isoparametric Hopf hypersurface of the complex pro-

jective space CP™ with weakly constant holomorphic curvature so that to accept basis as above
form. Then M?*"*1 is one of hypersurfaces listed in Theorem (2.1).

Proof. First by the assumption we have
Ailti = const. Vi=1,...,n (1)
Fix ai € {1,2,...,n}. Now for all tangent vector fields X,Y, Z in Codazzi equation

9(R(X,Y)Z,N) = g(VxA)Y — (Vy A) X, Z) (2)
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with set X = X; and Y = £ we have
—JXi = (Vx,A)§ = (Ved)X;
= (Xia)§ + aVx;§ — A(Vx,§) — (X)) Xi — AiVeXi + A(VeX5).
On the other hand
Vx,€=—Vx,§+9(AX;, )
=—-Vx,(JN)=—-JVx,N
= J(AX;) = NJX;
so by (3) and (4), we obtain
—JX; = (Xia)l + aNJ X — Nipi J X5 — (EX) Xs — AMiVe X + A(VeXs).
Suppose

VeXi = a;X;+ > biJX;+ct.
j=1 j=1
Since V¢& = 0, then in (6)we have ¢ = 0. Now by (5)

(f)\Z)XZ + Z )\ianj + Z /\iijXj — Z )\ianj
j=1 j=1 j=1

= b JX — eI X + AT X — (Xia)é — TX; =0
j=1

Since a; = 0 (9(V¢ X, X;) = 0), then
(EX)Xi + Y (N = M) X + Y (N — )by I X;
J#i J#
+()\iui —a\; + ,u,;bi — uib — 1)JXZ‘ — (Xza)f = 0.

Since X;, JX;|j = 1,,n are linearly independent, we have

§Ai =0,
Aiphi — aX; + pibi — piby — 1 =0,
XZ'O[ = 0.

Setting X = JX and Y = U in (2) and applying the same method, we get

Eui =0
Aipti — aXi — Aib + pib; — 1 =0,
JXZ‘CY = 0.

Adding (8) to (11), we get
2)\1/@ — Oé()\i + Mi) —2=0.

39

(13)

Using the covariant derivative of (13) with respect to £ and the equalities (7) and (10), we

obtain

(Ai + pi)€a = 0.
If
(Ai +pi)(p) =0
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for some p € M then by (13)

X(p)+1=0
and this is impossible. Therefore £ = 0 and so « is constant. Since A;u; and a are constant,
the relation (13) shows that A; + p; and hence A; and p; are constant. This shows that M 2n+1
is homogeneous and hence by Theorem (2.1) is congruent to one of the following manifolds:

(1) A tube around a k—dimensional totally geodesic CP* in CP"*! for some k € {0,--- ,n—
1}, or

(2) A tube around the complex quadric Q"' = {[¢] € CPn+ 1|43 + ... + ¢2 = 0} in
CP™!, or

(3) A tube around the Segre embedding of CP' x CP* into CP?*! for some k > 2, or

(4) A tube around the Plucker embedding into CP? of the complex Grassmann manifold
G2(C?) of complex 2—planes in C%, or

(5) A tube around the half spin embedding into CP'® of the Hermitian symmetric space
SO(10)/U(5).

O

4. HOPF HYPERSURFACES OF A SASAKIAN SPACE FORM

Let (M, g) be a real connected hypersurface of M (c) and N be a unit normal vector field on
M. Then we have
TM =D @& D+ @ R¢,

where D is a ¢-invariant subspace and D+ is the 1-dimensional subspace of TM spanned by
V = ¢(N) which is the orthogonal complement of D.

Definition 4.1. Let A be the shape operator of M and the plan spanned by £,V be an invariant
subspace of A. Then we call the hypersurface M of M a Hopf hypersurface.

Lemma 4.1. Suppose that M is a hypersurface of a Sasakian space form M(c) with the unit
normal vector field N on M. Then VxV = —pAX for all X € D.

Proof. From the Gauss formula and the Sasakian equation we compute
VxV +g(AX, V)N = —pAX
for all X € D. Considering the tangential and the normal parts, we have VxV = —pAX. [

Lemma 4.2. If M is a hypersurface of a Sasakian space form M(c) with the unit normal vector
field N on M, then A =V.

Proof. From the Gauss formula and the Sasakian equation we compute
Vv€+g(AV.§N = —¢V = N.

Considering the tangential and the normal parts of this relation, we conclude

VvE=0 , g(AV.§) =1, (14)
and again we compute

Vel + g(AL N = =9 = 0.
Considering the tangential and the normal parts of this relation, we conclude

Veg =0 , g(A£,€) =0, (15)
which implies that A = V.
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From the Gauss formula and the Sasakian equation with the Weingarten formula and above
lemma we compute
VeV +g(AV. N = N,
and let AV = oV + B€ we have
VvV +g(AV, V)N = —¢pAV = —aN,
considering the tangential and normal part we compute
VeV=0 , VyV=0, (16)

and AV =¢+aV. -
Let M be Hopf hypersurface of M(c). Since A is self adjoint and D and span{&, V} are
invariant under A for any p € M, we may suppose that the local frame for H (M) is of the form

X1,y Xno1,0(X1), .o, (Xn1),
for D and {Wy, Wa} for span{&, V'}, where
AX; = i Xs ,  Ad(X;) = Nio(Xo), 1=1,....,n—1
AWy =W, AWy = yWa.

Therefore

W1 =Ecosf + Vsinf,

Wy =Esinf 4+ V cos 6.
for some 0 < 6 < 7/2. So

V =Wisinf + Wy cos,

& =Wicosl — Wscosb.

U

Lemma 4.3. Suppose M is hypersurface of Sasakian space form M(c) then 1 = —tanf and
Yo = cot 6.

Proof. From lemma 4.1 we have
AWy = Afcost + AV sinf = — Vcosf + AV sind,
AWy = — Afsinf + AV cosf = Vsinf + AV cos¥.

Hense
V = AWy sinf — AWq cos = v Wosinf — v, Wi cos 6. (17)
So we have
(v28iné — cos @)Wa — (71 cosf +sin§)W; = 0.
But since W7 and Ws are linearly independent, we have

¥ =—tanf , 9 = cotd.

Hence
v1=—tanf |, 9 =cotf.

So for the eigenvalues v; and ~2 we have
(v2 — 1) cosfsinf = 1, (18)
71 cos? 0 + 9 sin? 0 = 0. (19)
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O

Theorem 4.1. Let M?" be a connected Hopf hypersurface of Sasakian space form (M2”+1, b,&,m)
with a weakly constant ¢-sectional curvature. Then M?™ has constant principal curvature

Proof. By the Gauss equation we have
9(R(X;, 0 X)X, Xi) = ¢+ Nifu;.

Since all ¢-sectional curvatures of M are constant then

Aifti = const. forall1<i<n-—1 (20)
Weset X =X; (1<i<n-—1)and Y =W; (1 <j <2) in the Codazzi equation then

0= (Vx, AW, — (Vw,A) X; = (Xia)W; + aVx,W; — A(Vx,Wj)
—(WiAi) Xi — MV, Xi + A(Vw, X;). (21)
A direct accounting show that
Vx,V =tan(Vy,V) = tan(Vx, (¢N))
= tan((Vx,¢)N + ¢Vx, Ny = tan(¢p(—AX;))

= — 19X,
and
Vx, €& =tan(Vy,&) = ¢ X;,
and
Vx, Wi = ¢X;cos8 — p;pX;sin 6
+(Xi(cos0))€ + (X;(sind))V, (22)
and
Vx,Wo = —¢X;sin0 — j1;¢X; cos 6
—(Xi(sin ))& + (Xi(cos@))V. (23)
Also
Vw, Xi = Vw,; (=¢° Xi) = —¢*(Vw, X)
= Vw,; Xi — 9(Vw,; Xi, )€,
then

On the other hand, since
Vi,V + g(AW;, V)N = Vy,V = Vi, (¢N) = —y;0 W},
and also g(AW;, V)N = —v;¢W;, then Vy, V = 0, so

o(Vw, Xi, V) = 0. (25)
By (24) and (25) we can suppose
Vi Xi =Y a; X+ Y 00X, (26)
i=1 j=1

Vw,X; = ZCL;-XJ‘ + Zb;¢XJ (27)
i=1 j=1



E. ABEDI, M. ILMAKCHI: HOPF HYPERSURFACES IN THE COMPLEX PROJECTIVE... 43

Since the base of {X;, pX;, Wi, Wa|i = 1,...,n — 1} is linear independent, then by (21), (22),
(23), (26) and (27) we get

W]/‘LZ = Oa ] = 1’2’ ( )
Y1 €080 — Yy sin @ — A;cos @ + p N sin €@ — b, + A\ib; = 0, (29)
—Y28in 6 — yopu; cos O + N\; sin 0 + pi\; cos O — b + \ib; = 0, (30)
(v2 — 1) ((Xi(cos ) sinf — (X;(sinf)) cos @) = 0. (32)

We set X = ¢X; and Y = W, in the Codazzi equation. Using the similar method, we will
have

Wixi=0, j=12 (33)
Y1 €088 — Y A;sin @ — p; cos 0 + pi A sin @ + p;b; — Aib; = 0, (34)
—28in 6 — Yo\ cos O + p; sin 0 + pi\; cos 0 + b — \ib = 0, (35)
¢Xiv; =0, j=1,2 (36)
(72 — 71)((¢X;(cos ) sinf — (¢ X;(sin b)) cosh) = (37)

With set X = W; and Y = W5 in Codazzi equation, too, we have

0= (leA)WQ — (VWQAZ')Wl
= (Wiv2)W2 + 72V, Wa
—A(Vw, W2) = (Way))Ws — Vi, Xa + AV, Wh). (38)

On the other hand, a direct computation shows that

Vi, Wa = — &(cos 0(&(sin0)) + sin 0(V (sin6)))
+ V(cos(&(cos b)) + sinf(V (cos b))
— cos0sin V& + cos? A4
— sin? OV € + sinf cos OV V (39)

and

Vi, W1 = — &(sin0(&(cos0)) — cos 0(V (cosb)))
— V(sinf(&(sind)) — cosO(V (sinh)))
— cos0sin V& + sin? OVeV
+ cos? OV € + sinf cos OV V. (40)

From (39) and (40) we have

Vi, Wa = — &(cos 0(£(sin0)) + sin0(V (sin6)))
+ V(cos6(&(cosB)) + sinf(V (cosh))),

Vi, W1 = — &(sin0(&(cos0)) — cos O(V (cosb)))
— V(sinf(&(sinf)) — cos B(V (sinh))).
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Then from (38) we have
[cosf(&(sinB)) + sinO(V (sin6))](AE — 12€)
+[cos0(&(cos ) + sinO(V (cos 6))](12V — AV)
+[sin 0(&(cos B)) — cos O(V (cos h))] (1€ — A€)
+[sin O(&(sin)) — cosO(V (sinh))](11V — AV) =0,
Wi(v2) — (718in6 — 2 sin 0)[sin 0(£(cos @) — cos O(V (cosb))]
+(y1 cos0 — y2 cos0)[sin§(£(sinf)) — cosO(V (sinh))] =0 (41)
and
Wa(y1) — (y2cos @ — 1 cos 0)[cos O(£(sin b)) + sin O(V (sin))]
+(y2sinf — 1 sinf)[cos §(£(cos f)) + sinO(V (cosh))] = 0. (42)
Now by adding (30) to (35) and (29) to (34) we have

27y98in 0 + (y2 cos @ — sin ) (\; + p;) — 2\ cos @ = 0, (43)
271 cos6 — (y18in 6 + cos 0)(\; + ;) + 21\ sin 6 = 0. (44)
By (43) and (44)
(A + p3) (71 +72) — 2Aip +2 = 0. (45)
From lemma 4.3 we have
W;(1172) = 0. (46)
By (45) if (A; + u;)(p) = 0 for some p € M, then A\?(p) = —1 and this is impossible, we have
Wi +72) = 0. (47)
Therefore
Wj(n) = Wi(y2) = 0. (48)

Now by (31) and (36) 1 and 2 are constant.
From (31), (36) and (18)

(71 +72) X (Ai + pi) = 0.
Hence if 77 + 72 = 0 then by (45) conclude
H=r%=1, Npm=1
With product of equation (43) to (44) we have
(4= N+ ) (F —2) =0.
Since v — 2 # 0 then
(Ai +pri)* =4

S0 \; + p; are constant.
In other case if v4 + 9 # 0 then

X (N + pi) =0,
hence, again \; + u; are constant.
Therefore A;, p1;,v1 and 9 are constant for ¢ =1,...,n — 1. O
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